Genome-wide characterization of the HD-ZIP IV transcription factor family in maize: preferential expression in the epidermis.
نویسندگان
چکیده
Transcription factors of the plant-specific homeodomain leucine zipper IV (HD-ZIP IV) family have been found from moss to higher plants, and several family members have been associated with epidermis-related expression and/or function. In maize (Zea mays), four of the five characterized HD-ZIP IV family members are expressed specifically in the epidermis, one contributes to trichome development, and target genes of another one are involved in cuticle biosynthesis. Assessing the phylogeny, synteny, gene structure, expression, and regulation of the entire family in maize, 12 novel ZmHDZIV genes were identified in the recently sequenced maize genome. Among the 17 genes, eight form homeologous pairs duplicated after the split of maize and sorghum (Sorghum bicolor), whereas a fifth duplication is shared with sorghum. All 17 ZmHDZIV genes appear to be derived from a basic module containing seven introns in the coding region. With one possible exception, all 17 ZmHDZIV genes are expressed and show preferential expression in immature reproductive organs. Fourteen of 15 ZmHDZIV genes with detectable expression in laser-dissected tissues exhibit a moderate to very strong expression preference for the epidermis, suggesting that at least in maize, the majority of HD-ZIP IV family members may have epidermis-related functions. Thirteen ZmHDZIV genes carry conserved motifs of 19 and 21 nucleotides in their 3' untranslated region. The strong evolutionary conservation and the size of the conserved motifs in the 3' untranslated region suggest that the expression of HD-ZIP IV genes may be regulated by small RNAs.
منابع مشابه
Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize
BACKGROUND Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes ...
متن کاملOverexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis.
Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, an...
متن کاملThe HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize.
Among the genes controlling the differentiation and maintenance of epidermal cell fate are members of the HD-ZIP IV class family of plant-specific transcription factors, most of which are specifically expressed in the epidermis of tissues. Here, we report the functional analysis of the maize HD-ZIP IV gene OCL4 (outer cell layer 4) via the phenotypic analysis of two insertional mutants, and of ...
متن کاملMicroarray studies of maize plants overexpressing HD-ZIP IV gene, OUTER CELL LAYER1 (OCL1) identified target genes in lipid metabolism and cuticle biosynthesis, suggesting a role in pavement
INTRODUCTION Epidermis, the outermost cell layer of land plants, serves as an interface between plants and the surrounding environment. The shoot epidermis, which is derived from the L1 layer of the shoot apex, gives rise to specialized cell types – pavement cells, stomatal guard cells and trichomes – to optimize the balance between protection and gas exchange. The cuticulated pavement cells fo...
متن کاملRegulation of a maize HD-ZIP IV transcription factor by a non-conventional RDR2-dependent small RNA.
Small non-coding RNAs are versatile riboregulators that control gene expression at the transcriptional or post-transcriptional level, governing many facets of plant development. Here we present evidence for the existence of a 24 nt small RNA (named small1) that is complementary to the 3' UTR of OCL1 (Outer Cell Layer1), the founding member of the maize HD-ZIP IV gene family encoding plant-speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 157 2 شماره
صفحات -
تاریخ انتشار 2011